Current Status and Direction: ATP

Marc G. Stanley

Director, ATP

Presentation to:

Visiting Committee on Advanced Technology

National Institute of Standards and Technology

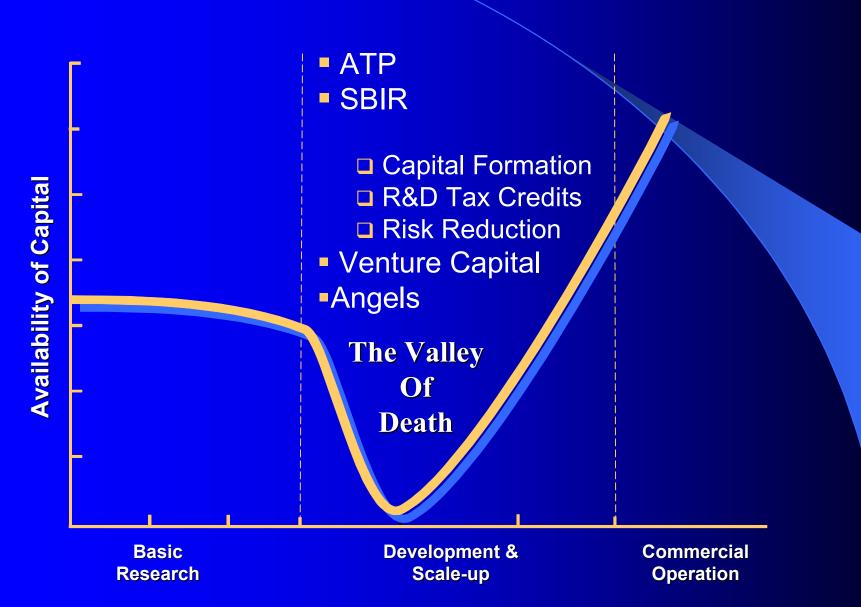
December 9, 2003

Outline

- Overview
- Current Status
- Future Direction

Overview

ATP's Mission



To accelerate the development of innovative technologies for broad national benefit through partnerships with the private sector.

ATP's Legislative Goals

- "...assisting United States businesses in creating and applying the generic technology and research results to
 - (1) commercialize significant new scientific discoveries and technologies rapidly; and
 - (2) refine manufacturing technologies"
 - Omnibus Trade and Competitiveness Act of 1988, Public Law 100-418

Technology Policy Framework

Fourteen Years of Innovation

- Since 1990, 6,054 proposals submitted to 43 competitions, requesting \$12,969 million from ATP
- 709 projects awarded with 1,433 participants and an equal number of subcontractors
- 207 joint ventures and 502 single companies
- \$4,101 million of high-risk research funded
 - ATP share = \$2,114 million
 - Industry share = \$1,987 million
- Over 165 universities participate
- Over 30 national laboratories participate
- SMALL BUSINESSES ARE THRIVING
 - 65% of projects led by small businesses

Drug Discovery Technologies

DNA Diagnostics

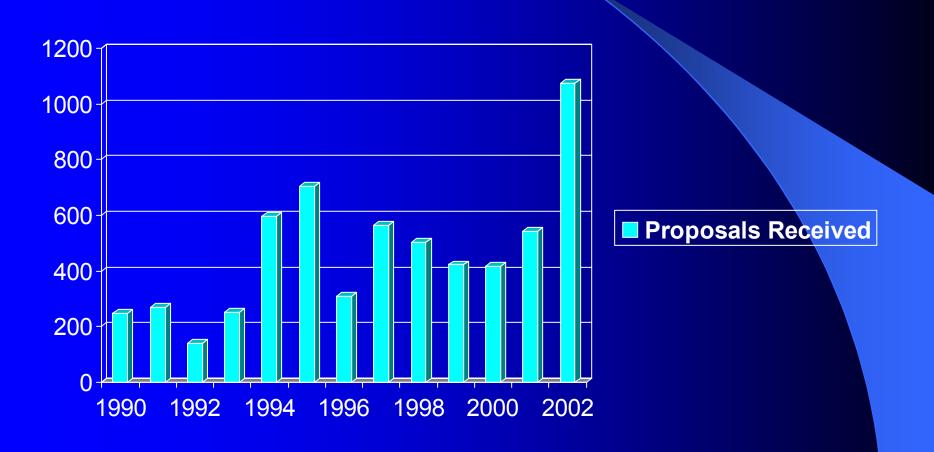
Fuel Cells

Aquaculture

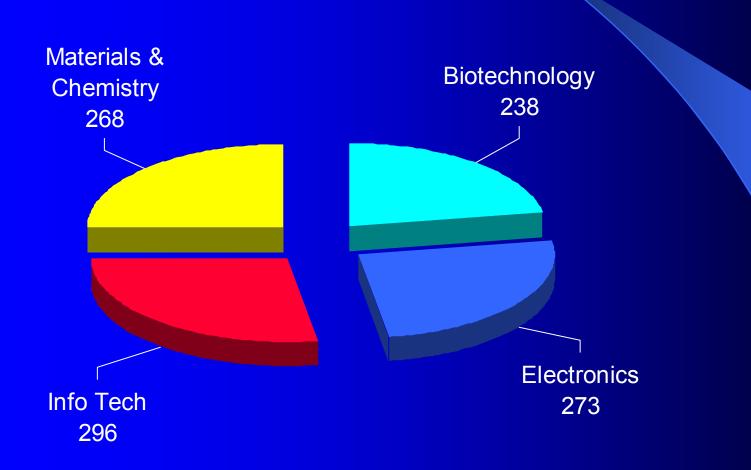
Discrete Manufacturing

Homeland Security

Regenerative Medicine


Current Status

- Competition
- Interaction with NIST
- Assessments
- Budget


Current Status

- Competition
- Interaction with NIST
- Assessments
- Budget

More Proposals Than Ever

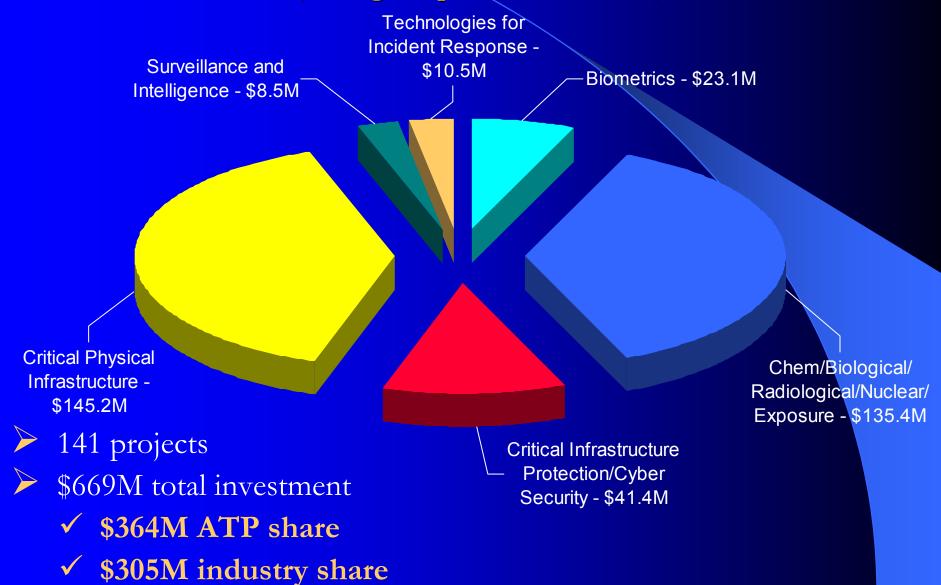
Proposals Covered All Technology Areas

Current Status

- Competition
- Interaction with NIST
- Assessments
- Budget

ATP Investments in Nanoscale Technologies

Nanoscale
Instrumentation &
Metrology
\$20.1 M


> 34 projects

Manufacturing at the Nanoscale \$57.2 M

- \$246.7 M total investment
 - **✓** \$127.1 M ATP share
 - ✓ \$119.6 M Industry share

ATP Investments in Technologies Related to Homeland Security

(through September 30, 2003)

Enabling Technologies Align with NIST Strategic Working Groups: Homeland Security

HOMELAND SECURITY

Biometrics

• CBRNE: Chemical/Biological/Radiological/Nuclear/Exposure

CPI: Critical Physical Infrastructure

TIR: Technologies for Incident Response

CIP: Critical Infrastructure Protection

CS: Cyber-security

S&I: Surveillance and Intelligence

CDM: Critical Defense Manufacturing

HEALTH CARE

NANOTECHNOLOGY

IT/KM

Current Status

- Competition
- Interaction with NIST
- Assessments
- Budget

"An Exceptional Assessment Effort:

The ATP assessment program has produced one of the most rigorous and intensive efforts of any U.S. technology program."

-National Research Council

The Advanced Technology Program: Assessing Outcomes

Components of ATP's Assessment Program

Statistical Profiling of:

- Applicants
- Projects
- Participants
- Technologies

Status Reports (mini case studies) for all completed Projects Statistical
Studies of
Innovation
and Portfolio
Impacts

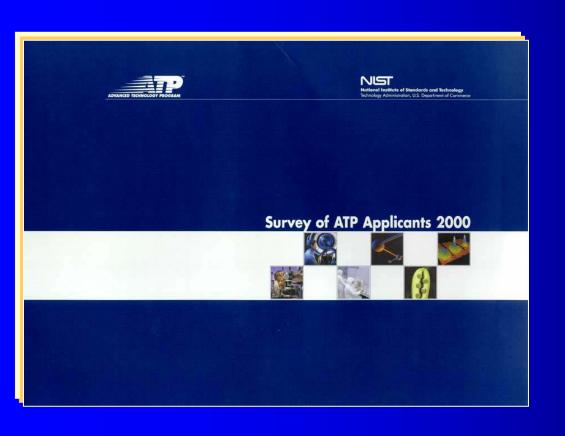
Special Issue Studies

Progress Tracking of all Projects and Participants

- Business Reporting System
- Other Surveys

Detailed
Microeconomics
Case Studies
of
Selected
Projects/
Programs

Macroeconomic


Impact
Projects
from
Selected
Microeconomic
Case Studies

Development and Testing of New Assessment Models/Tools

Recent Assessments Demonstrate

- ATP substantially expanded and enhanced R&D activities
- Limited private funding available for early-stage technology development activities.
- ATP targets technology development that VCs do not address
- Participation in research consortia associated with increased research productivity.
- Estimated benefit-cost ratio of at least 125:1 in digital mammography applications
- More than \$15B in expected present value of social benefits from just a few projects!

Survey of ATP Applicants 2000

Key Findings:

- ATP awards attract additional funding ("Halo Effect")
- ATP fosters new R&D directions and partnerships
- ATP fosters
 collaboration between
 companies and
 universities

Current Status

- Competition
- Interaction with NIST
- Assessments
- <u>Budget</u>

Budget

- Conference Agreement:
 - **-\$179.175M**
 - •\$60.7M for New Awards
 - Focused Competition on Homeland Security

Future Direction

- Promising Areas
- Challenges
- New Partnerships

Future Direction

- O Promising Areas
- Challenges
- New Partnerships

Leap Frogging to Tomorrow's Power Technologies

Portable Power (>\$5/W)

- Cellular telephones
- Laptops
- Power tools
- Medical

Remote Power (\$3/W)

- Telecommunications
- Village power
- Water pumping
- Refrigeration

Technology Learning Curve

- Distributed premium power
- Demand supply mgt.
- Residential

Central utility

Automotive Power (\$0.05/W)

EVs

Respond to Real Customer Needs

Energy / Photovoltaics

Advancing the Solar Century – Ubiquitous Solar Cell Manufacturing Evergreen Solar Inc., Marlborough, MA

Project

- ✓ Develop the Quad ribbon growth process: an ultra-compact crucible that grows four ribbons at once with very low energy and materials input.
- ✓ Utilizes completely new principles in meniscus and crucible temperature control.
- ✓ Very low capital, consumable, and labor costs.

October 2000 – October 2003 Total project budget: \$3,760,714 ATP Cost Share: \$2,000,000

Project Impacts

- ✓ Much reduced manufacturing cost of PV cells approaching \$1 per Watt.
- ✓ Allows wider spread use of solar cells for gridconnected and in developing country applications.

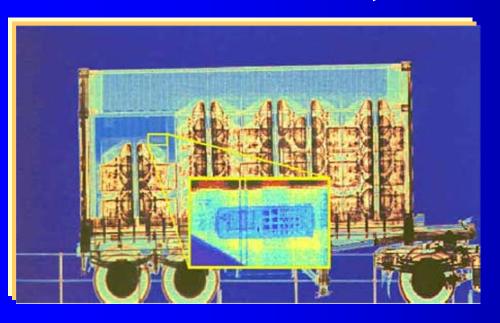
Energy / Fuel Cells

Distributed Premium Power Fuel Cell Systems Incorporating Novel Materials and Assembly Techniques
Plug Power, Inc., Latham, N.Y.

Other Participants: SRI International, Menlo Park, Calif.; Polyfuel, Inc., Menlo Park, Calif.

May 1999 to May 2002 Total project budget: \$9,738K ATP Cost Share: \$4,738K

Project


Create fuel cell systems based on hightemperature membrane technology that can tolerate high levels of carbon monoxide beyond 50ppm today.

Impacts

- ✓ Succeeded in producing PEM fuel cells with hightemperature membrane operating at >150 °C (with Celanese Ventures)
- ✓ Demonstrated 20,000 ppm CO tolerance with more than 5000 hours stable endurance
- ✓ Significantly simplified PEM fuel-cell system
- ✓ ATP has pioneered funding PEM fuel cells forms distributed power generation.

Imaging/Homeland Security

Novel X-ray Security Systems: Fast, Accurate, and Affordable Varian Medical Systems, Mountain View, CA Palo Alto Research Center, Palo Alto, CA

October 2003 – October 2007

Total project budget: \$11,759,104.00

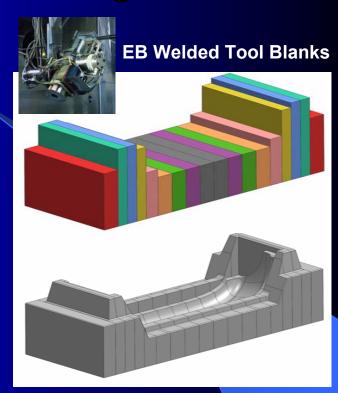
ATP Cost Share: \$5,873,013.00

Project

Develop very large-area digital X-ray and chemical inspection systems of cargo containers at airports, seaports, and other points of entry with heretofore-unavailable accuracy for near error-free screening.

Project Impacts

- Faster, cheaper, and more accurate inspections of luggage, air and ship cargo containers, in real time.
- ✓ Increase the number standard cargo containers that could be inspected


0H3028

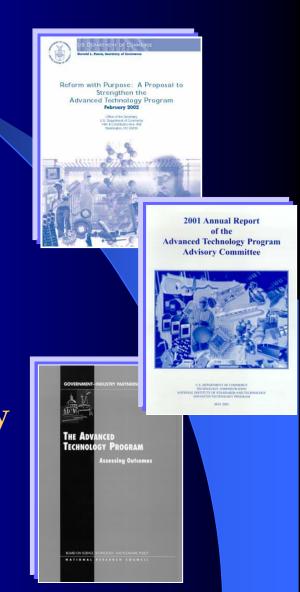
Rapid Tooling Technologies

"Old School"

- Machine, cut, assemble pieces
- Trial and error method
- Limited range of materials
- Labor and skill intensive

Advanced technologies have reduced tooling time from months to weeks, providing a potential competitive advantage to domestic tool and die companies.

- New Approaches


 Advanced process simulation techniques
 - Built in heating and cooling channels
 - Shorter tooling time
 - Ease of reconfiguration

Future Direction

- Promising Areas
- Challenges
- New Partnerships

Major Challenge Ahead

- Stability
 - Reform with a Purpose(Secretary Evans)
 - The Advanced TechnologyProgram: Assessing Outcomes(NRC)
 - Annual Report of the ATP AdvisoryCommittee(ATP Advisory Committee)

Future Direction

- Promising Areas
- Challenges
- New Partnerships

Strategic Partnerships

- Development of New Partnerships
 - States
 - National Governors' Association (NGA)
 - Universities
 - Government Agencies
 - DHS
 - NIH
 - NIST Laboratories